Metamath Proof Explorer


Theorem preqsn

Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)

Ref Expression
Hypotheses preqsn.1
|- A e. _V
preqsn.2
|- B e. _V
Assertion preqsn
|- ( { A , B } = { C } <-> ( A = B /\ B = C ) )

Proof

Step Hyp Ref Expression
1 preqsn.1
 |-  A e. _V
2 preqsn.2
 |-  B e. _V
3 id
 |-  ( A e. _V -> A e. _V )
4 2 a1i
 |-  ( A e. _V -> B e. _V )
5 3 4 preqsnd
 |-  ( A e. _V -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) )
6 1 5 ax-mp
 |-  ( { A , B } = { C } <-> ( A = C /\ B = C ) )
7 eqeq2
 |-  ( B = C -> ( A = B <-> A = C ) )
8 7 pm5.32ri
 |-  ( ( A = B /\ B = C ) <-> ( A = C /\ B = C ) )
9 6 8 bitr4i
 |-  ( { A , B } = { C } <-> ( A = B /\ B = C ) )