Step |
Hyp |
Ref |
Expression |
1 |
|
preqsnd.1 |
|- ( ph -> A e. V ) |
2 |
|
preqsnd.2 |
|- ( ph -> B e. W ) |
3 |
1
|
adantl |
|- ( ( C e. _V /\ ph ) -> A e. V ) |
4 |
2
|
adantl |
|- ( ( C e. _V /\ ph ) -> B e. W ) |
5 |
|
simpl |
|- ( ( C e. _V /\ ph ) -> C e. _V ) |
6 |
|
dfsn2 |
|- { C } = { C , C } |
7 |
6
|
eqeq2i |
|- ( { A , B } = { C } <-> { A , B } = { C , C } ) |
8 |
|
preq12bg |
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C , C } <-> ( ( A = C /\ B = C ) \/ ( A = C /\ B = C ) ) ) ) |
9 |
|
oridm |
|- ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = C ) ) <-> ( A = C /\ B = C ) ) |
10 |
8 9
|
bitrdi |
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C , C } <-> ( A = C /\ B = C ) ) ) |
11 |
7 10
|
bitrid |
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
12 |
3 4 5 5 11
|
syl22anc |
|- ( ( C e. _V /\ ph ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
13 |
|
snprc |
|- ( -. C e. _V <-> { C } = (/) ) |
14 |
13
|
biimpi |
|- ( -. C e. _V -> { C } = (/) ) |
15 |
14
|
adantr |
|- ( ( -. C e. _V /\ ph ) -> { C } = (/) ) |
16 |
15
|
eqeq2d |
|- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } <-> { A , B } = (/) ) ) |
17 |
|
prnzg |
|- ( A e. V -> { A , B } =/= (/) ) |
18 |
|
eqneqall |
|- ( { A , B } = (/) -> ( { A , B } =/= (/) -> ( A = C /\ B = C ) ) ) |
19 |
17 18
|
syl5com |
|- ( A e. V -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
20 |
1 19
|
syl |
|- ( ph -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
21 |
20
|
adantl |
|- ( ( -. C e. _V /\ ph ) -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
22 |
16 21
|
sylbid |
|- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } -> ( A = C /\ B = C ) ) ) |
23 |
|
eleq1 |
|- ( C = A -> ( C e. _V <-> A e. _V ) ) |
24 |
23
|
eqcoms |
|- ( A = C -> ( C e. _V <-> A e. _V ) ) |
25 |
24
|
notbid |
|- ( A = C -> ( -. C e. _V <-> -. A e. _V ) ) |
26 |
|
pm2.24 |
|- ( A e. _V -> ( -. A e. _V -> ( B = C -> { A , B } = { C } ) ) ) |
27 |
|
elex |
|- ( A e. V -> A e. _V ) |
28 |
26 27
|
syl11 |
|- ( -. A e. _V -> ( A e. V -> ( B = C -> { A , B } = { C } ) ) ) |
29 |
25 28
|
syl6bi |
|- ( A = C -> ( -. C e. _V -> ( A e. V -> ( B = C -> { A , B } = { C } ) ) ) ) |
30 |
29
|
com13 |
|- ( A e. V -> ( -. C e. _V -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) ) |
31 |
1 30
|
syl |
|- ( ph -> ( -. C e. _V -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) ) |
32 |
31
|
impcom |
|- ( ( -. C e. _V /\ ph ) -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) |
33 |
32
|
impd |
|- ( ( -. C e. _V /\ ph ) -> ( ( A = C /\ B = C ) -> { A , B } = { C } ) ) |
34 |
22 33
|
impbid |
|- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
35 |
12 34
|
pm2.61ian |
|- ( ph -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |