Step |
Hyp |
Ref |
Expression |
1 |
|
preqsnd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
preqsnd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
1
|
adantl |
⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐴 ∈ 𝑉 ) |
4 |
2
|
adantl |
⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐵 ∈ 𝑊 ) |
5 |
|
simpl |
⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐶 ∈ V ) |
6 |
|
dfsn2 |
⊢ { 𝐶 } = { 𝐶 , 𝐶 } |
7 |
6
|
eqeq2i |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ) |
8 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) ) |
9 |
|
oridm |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
10 |
8 9
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
11 |
7 10
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
12 |
3 4 5 5 11
|
syl22anc |
⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
13 |
|
snprc |
⊢ ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ ) |
14 |
13
|
biimpi |
⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ ) |
15 |
14
|
adantr |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → { 𝐶 } = ∅ ) |
16 |
15
|
eqeq2d |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ { 𝐴 , 𝐵 } = ∅ ) ) |
17 |
|
prnzg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 , 𝐵 } ≠ ∅ ) |
18 |
|
eqneqall |
⊢ ( { 𝐴 , 𝐵 } = ∅ → ( { 𝐴 , 𝐵 } ≠ ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
19 |
17 18
|
syl5com |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
22 |
16 21
|
sylbid |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝐶 = 𝐴 → ( 𝐶 ∈ V ↔ 𝐴 ∈ V ) ) |
24 |
23
|
eqcoms |
⊢ ( 𝐴 = 𝐶 → ( 𝐶 ∈ V ↔ 𝐴 ∈ V ) ) |
25 |
24
|
notbid |
⊢ ( 𝐴 = 𝐶 → ( ¬ 𝐶 ∈ V ↔ ¬ 𝐴 ∈ V ) ) |
26 |
|
pm2.24 |
⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ V → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) |
27 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
28 |
26 27
|
syl11 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ 𝑉 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) |
29 |
25 28
|
syl6bi |
⊢ ( 𝐴 = 𝐶 → ( ¬ 𝐶 ∈ V → ( 𝐴 ∈ 𝑉 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
30 |
29
|
com13 |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐶 ∈ V → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
31 |
1 30
|
syl |
⊢ ( 𝜑 → ( ¬ 𝐶 ∈ V → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
32 |
31
|
impcom |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) |
33 |
32
|
impd |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 } ) ) |
34 |
22 33
|
impbid |
⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
35 |
12 34
|
pm2.61ian |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |