| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) |
| 2 |
1
|
necon3ai |
⊢ ( 𝐴 ≠ 𝐵 → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
| 3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑊 ) |
| 6 |
4 5
|
preqsnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 7 |
6
|
necon3abid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 } ↔ ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 8 |
3 7
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≠ { 𝐶 } ) |