Metamath Proof Explorer


Theorem prlem1

Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Hypotheses prlem1.1 φηχ
prlem1.2 ψ¬θ
Assertion prlem1 φψψχθτη

Proof

Step Hyp Ref Expression
1 prlem1.1 φηχ
2 prlem1.2 ψ¬θ
3 1 biimprd φχη
4 3 adantld φψχη
5 2 pm2.21d ψθη
6 5 adantrd ψθτη
7 4 6 jaao φψψχθτη
8 7 ex φψψχθτη