Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Propositional calculus Mixed connectives prlem1  
				
		 
		
			
		 
		Description:   A specialized lemma for set theory (to derive the Axiom of Pairing).
       (Contributed by NM , 18-Oct-1995)   (Proof shortened by Andrew Salmon , 13-May-2011)   (Proof shortened by Wolf Lammen , 5-Jan-2013) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						prlem1.1 ⊢  ( 𝜑   →  ( 𝜂   ↔  𝜒  ) )  
					
						prlem1.2 ⊢  ( 𝜓   →  ¬  𝜃  )  
				
					Assertion 
					prlem1 ⊢   ( 𝜑   →  ( 𝜓   →  ( ( ( 𝜓   ∧  𝜒  )  ∨  ( 𝜃   ∧  𝜏  ) )  →  𝜂  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							prlem1.1 ⊢  ( 𝜑   →  ( 𝜂   ↔  𝜒  ) )  
						
							2 
								
							 
							prlem1.2 ⊢  ( 𝜓   →  ¬  𝜃  )  
						
							3 
								1 
							 
							biimprd ⊢  ( 𝜑   →  ( 𝜒   →  𝜂  ) )  
						
							4 
								3 
							 
							adantld ⊢  ( 𝜑   →  ( ( 𝜓   ∧  𝜒  )  →  𝜂  ) )  
						
							5 
								2 
							 
							pm2.21d ⊢  ( 𝜓   →  ( 𝜃   →  𝜂  ) )  
						
							6 
								5 
							 
							adantrd ⊢  ( 𝜓   →  ( ( 𝜃   ∧  𝜏  )  →  𝜂  ) )  
						
							7 
								4  6 
							 
							jaao ⊢  ( ( 𝜑   ∧  𝜓  )  →  ( ( ( 𝜓   ∧  𝜒  )  ∨  ( 𝜃   ∧  𝜏  ) )  →  𝜂  ) )  
						
							8 
								7 
							 
							ex ⊢  ( 𝜑   →  ( 𝜓   →  ( ( ( 𝜓   ∧  𝜒  )  ∨  ( 𝜃   ∧  𝜏  ) )  →  𝜂  ) ) )