Metamath Proof Explorer


Theorem prmind

Description: Perform induction over the multiplicative structure of NN . If a property ph ( x ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses prmind.1 x=1φψ
prmind.2 x=yφχ
prmind.3 x=zφθ
prmind.4 x=yzφτ
prmind.5 x=Aφη
prmind.6 ψ
prmind.7 xφ
prmind.8 y2z2χθτ
Assertion prmind Aη

Proof

Step Hyp Ref Expression
1 prmind.1 x=1φψ
2 prmind.2 x=yφχ
3 prmind.3 x=zφθ
4 prmind.4 x=yzφτ
5 prmind.5 x=Aφη
6 prmind.6 ψ
7 prmind.7 xφ
8 prmind.8 y2z2χθτ
9 7 adantr xy1x1χφ
10 1 2 3 4 5 6 9 8 prmind2 Aη