Database ELEMENTARY NUMBER THEORY Elementary prime number theory Elementary properties prmind  
				
		 
		
			
		 
		Description:   Perform induction over the multiplicative structure of NN  .  If a
       property ph ( x )  holds for the primes and 1  and is preserved
       under multiplication, then it holds for every positive integer.
       (Contributed by Mario Carneiro , 20-Jun-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						prmind.1    ⊢   x  =   1     →    φ   ↔   ψ         
					 
					
						prmind.2    ⊢   x  =  y    →    φ   ↔   χ         
					 
					
						prmind.3    ⊢   x  =  z    →    φ   ↔   θ         
					 
					
						prmind.4    ⊢   x  =   y  ⁢  z      →    φ   ↔   τ         
					 
					
						prmind.5    ⊢   x  =  A    →    φ   ↔   η         
					 
					
						prmind.6   ⊢   ψ      
					 
					
						prmind.7    ⊢   x  ∈  ℙ    →   φ        
					 
					
						prmind.8    ⊢    y  ∈   ℤ   ≥   2         ∧   z  ∈   ℤ   ≥   2          →     χ   ∧   θ    →   τ         
					 
				
					Assertion 
					prmind    ⊢   A  ∈   ℕ     →   η        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							prmind.1   ⊢   x  =   1     →    φ   ↔   ψ         
						
							2 
								
							 
							prmind.2   ⊢   x  =  y    →    φ   ↔   χ         
						
							3 
								
							 
							prmind.3   ⊢   x  =  z    →    φ   ↔   θ         
						
							4 
								
							 
							prmind.4   ⊢   x  =   y  ⁢  z      →    φ   ↔   τ         
						
							5 
								
							 
							prmind.5   ⊢   x  =  A    →    φ   ↔   η         
						
							6 
								
							 
							prmind.6  ⊢   ψ      
						
							7 
								
							 
							prmind.7   ⊢   x  ∈  ℙ    →   φ        
						
							8 
								
							 
							prmind.8   ⊢    y  ∈   ℤ   ≥   2         ∧   z  ∈   ℤ   ≥   2          →     χ   ∧   θ    →   τ         
						
							9 
								7 
							 
							adantr   ⊢    x  ∈  ℙ    ∧   ∀  y  ∈   1   …  x  −   1   χ      →   φ        
						
							10 
								1  2  3  4  5  6  9  8 
							 
							prmind2   ⊢   A  ∈   ℕ     →   η