Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
prodsns
Next ⟩
fprodfac
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodsns
Description:
A product of the singleton is the term.
(Contributed by
Scott Fenton
, 25-Dec-2017)
Ref
Expression
Assertion
prodsns
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A
Proof
Step
Hyp
Ref
Expression
1
nfcv
⊢
Ⅎ
_
n
A
2
nfcsb1v
⊢
Ⅎ
_
k
⦋
n
/
k
⦌
A
3
csbeq1a
⊢
k
=
n
→
A
=
⦋
n
/
k
⦌
A
4
1
2
3
cbvprodi
⊢
∏
k
∈
M
A
=
∏
n
∈
M
⦋
n
/
k
⦌
A
5
csbeq1
⊢
n
=
M
→
⦋
n
/
k
⦌
A
=
⦋
M
/
k
⦌
A
6
5
prodsn
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∏
n
∈
M
⦋
n
/
k
⦌
A
=
⦋
M
/
k
⦌
A
7
4
6
eqtrid
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∏
k
∈
M
A
=
⦋
M
/
k
⦌
A