Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prodsn.1 | |
|
Assertion | prodsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodsn.1 | |
|
2 | nfcv | |
|
3 | nfcsb1v | |
|
4 | csbeq1a | |
|
5 | 2 3 4 | cbvprodi | |
6 | csbeq1 | |
|
7 | 1nn | |
|
8 | 7 | a1i | |
9 | 1z | |
|
10 | f1osng | |
|
11 | fzsn | |
|
12 | 9 11 | ax-mp | |
13 | f1oeq2 | |
|
14 | 12 13 | ax-mp | |
15 | 10 14 | sylibr | |
16 | 9 15 | mpan | |
17 | 16 | adantr | |
18 | velsn | |
|
19 | csbeq1 | |
|
20 | nfcvd | |
|
21 | 20 1 | csbiegf | |
22 | 21 | adantr | |
23 | 19 22 | sylan9eqr | |
24 | 18 23 | sylan2b | |
25 | simplr | |
|
26 | 24 25 | eqeltrd | |
27 | 12 | eleq2i | |
28 | velsn | |
|
29 | 27 28 | bitri | |
30 | fvsng | |
|
31 | 9 30 | mpan | |
32 | 31 | adantr | |
33 | 32 | csbeq1d | |
34 | simpr | |
|
35 | fvsng | |
|
36 | 9 34 35 | sylancr | |
37 | 22 33 36 | 3eqtr4rd | |
38 | fveq2 | |
|
39 | fveq2 | |
|
40 | 39 | csbeq1d | |
41 | 38 40 | eqeq12d | |
42 | 37 41 | syl5ibrcom | |
43 | 42 | imp | |
44 | 29 43 | sylan2b | |
45 | 6 8 17 26 44 | fprod | |
46 | 5 45 | eqtrid | |
47 | 9 36 | seq1i | |
48 | 46 47 | eqtrd | |