Metamath Proof Explorer


Theorem prodsn

Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypothesis prodsn.1 k=MA=B
Assertion prodsn MVBkMA=B

Proof

Step Hyp Ref Expression
1 prodsn.1 k=MA=B
2 nfcv _mA
3 nfcsb1v _km/kA
4 csbeq1a k=mA=m/kA
5 2 3 4 cbvprodi kMA=mMm/kA
6 csbeq1 m=1Mnm/kA=1Mn/kA
7 1nn 1
8 7 a1i MVB1
9 1z 1
10 f1osng 1MV1M:11-1 ontoM
11 fzsn 111=1
12 9 11 ax-mp 11=1
13 f1oeq2 11=11M:111-1 ontoM1M:11-1 ontoM
14 12 13 ax-mp 1M:111-1 ontoM1M:11-1 ontoM
15 10 14 sylibr 1MV1M:111-1 ontoM
16 9 15 mpan MV1M:111-1 ontoM
17 16 adantr MVB1M:111-1 ontoM
18 velsn mMm=M
19 csbeq1 m=Mm/kA=M/kA
20 nfcvd MV_kB
21 20 1 csbiegf MVM/kA=B
22 21 adantr MVBM/kA=B
23 19 22 sylan9eqr MVBm=Mm/kA=B
24 18 23 sylan2b MVBmMm/kA=B
25 simplr MVBmMB
26 24 25 eqeltrd MVBmMm/kA
27 12 eleq2i n11n1
28 velsn n1n=1
29 27 28 bitri n11n=1
30 fvsng 1MV1M1=M
31 9 30 mpan MV1M1=M
32 31 adantr MVB1M1=M
33 32 csbeq1d MVB1M1/kA=M/kA
34 simpr MVBB
35 fvsng 1B1B1=B
36 9 34 35 sylancr MVB1B1=B
37 22 33 36 3eqtr4rd MVB1B1=1M1/kA
38 fveq2 n=11Bn=1B1
39 fveq2 n=11Mn=1M1
40 39 csbeq1d n=11Mn/kA=1M1/kA
41 38 40 eqeq12d n=11Bn=1Mn/kA1B1=1M1/kA
42 37 41 syl5ibrcom MVBn=11Bn=1Mn/kA
43 42 imp MVBn=11Bn=1Mn/kA
44 29 43 sylan2b MVBn111Bn=1Mn/kA
45 6 8 17 26 44 fprod MVBmMm/kA=seq1×1B1
46 5 45 eqtrid MVBkMA=seq1×1B1
47 9 36 seq1i MVBseq1×1B1=B
48 46 47 eqtrd MVBkMA=B