| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodsn.1 |
|- ( k = M -> A = B ) |
| 2 |
|
nfcv |
|- F/_ m A |
| 3 |
|
nfcsb1v |
|- F/_ k [_ m / k ]_ A |
| 4 |
|
csbeq1a |
|- ( k = m -> A = [_ m / k ]_ A ) |
| 5 |
2 3 4
|
cbvprodi |
|- prod_ k e. { M } A = prod_ m e. { M } [_ m / k ]_ A |
| 6 |
|
csbeq1 |
|- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 7 |
|
1nn |
|- 1 e. NN |
| 8 |
7
|
a1i |
|- ( ( M e. V /\ B e. CC ) -> 1 e. NN ) |
| 9 |
|
1z |
|- 1 e. ZZ |
| 10 |
|
f1osng |
|- ( ( 1 e. ZZ /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 11 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 12 |
9 11
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 13 |
|
f1oeq2 |
|- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
| 14 |
12 13
|
ax-mp |
|- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 15 |
10 14
|
sylibr |
|- ( ( 1 e. ZZ /\ M e. V ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 16 |
9 15
|
mpan |
|- ( M e. V -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 17 |
16
|
adantr |
|- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 18 |
|
velsn |
|- ( m e. { M } <-> m = M ) |
| 19 |
|
csbeq1 |
|- ( m = M -> [_ m / k ]_ A = [_ M / k ]_ A ) |
| 20 |
|
nfcvd |
|- ( M e. V -> F/_ k B ) |
| 21 |
20 1
|
csbiegf |
|- ( M e. V -> [_ M / k ]_ A = B ) |
| 22 |
21
|
adantr |
|- ( ( M e. V /\ B e. CC ) -> [_ M / k ]_ A = B ) |
| 23 |
19 22
|
sylan9eqr |
|- ( ( ( M e. V /\ B e. CC ) /\ m = M ) -> [_ m / k ]_ A = B ) |
| 24 |
18 23
|
sylan2b |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A = B ) |
| 25 |
|
simplr |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> B e. CC ) |
| 26 |
24 25
|
eqeltrd |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 27 |
12
|
eleq2i |
|- ( n e. ( 1 ... 1 ) <-> n e. { 1 } ) |
| 28 |
|
velsn |
|- ( n e. { 1 } <-> n = 1 ) |
| 29 |
27 28
|
bitri |
|- ( n e. ( 1 ... 1 ) <-> n = 1 ) |
| 30 |
|
fvsng |
|- ( ( 1 e. ZZ /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 31 |
9 30
|
mpan |
|- ( M e. V -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 32 |
31
|
adantr |
|- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 33 |
32
|
csbeq1d |
|- ( ( M e. V /\ B e. CC ) -> [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A = [_ M / k ]_ A ) |
| 34 |
|
simpr |
|- ( ( M e. V /\ B e. CC ) -> B e. CC ) |
| 35 |
|
fvsng |
|- ( ( 1 e. ZZ /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 36 |
9 34 35
|
sylancr |
|- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 37 |
22 33 36
|
3eqtr4rd |
|- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) |
| 38 |
|
fveq2 |
|- ( n = 1 -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
| 39 |
|
fveq2 |
|- ( n = 1 -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
| 40 |
39
|
csbeq1d |
|- ( n = 1 -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) |
| 41 |
38 40
|
eqeq12d |
|- ( n = 1 -> ( ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A <-> ( { <. 1 , B >. } ` 1 ) = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) ) |
| 42 |
37 41
|
syl5ibrcom |
|- ( ( M e. V /\ B e. CC ) -> ( n = 1 -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) ) |
| 43 |
42
|
imp |
|- ( ( ( M e. V /\ B e. CC ) /\ n = 1 ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 44 |
29 43
|
sylan2b |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 45 |
6 8 17 26 44
|
fprod |
|- ( ( M e. V /\ B e. CC ) -> prod_ m e. { M } [_ m / k ]_ A = ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) ) |
| 46 |
5 45
|
eqtrid |
|- ( ( M e. V /\ B e. CC ) -> prod_ k e. { M } A = ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) ) |
| 47 |
9 36
|
seq1i |
|- ( ( M e. V /\ B e. CC ) -> ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) = B ) |
| 48 |
46 47
|
eqtrd |
|- ( ( M e. V /\ B e. CC ) -> prod_ k e. { M } A = B ) |