Metamath Proof Explorer


Theorem prtlem18

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙ = x y | u A x u y u
Assertion prtlem18 Prt A v A z v w v z ˙ w

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙ = x y | u A x u y u
2 rspe v A z v w v v A z v w v
3 2 expr v A z v w v v A z v w v
4 1 prtlem13 z ˙ w v A z v w v
5 3 4 syl6ibr v A z v w v z ˙ w
6 5 a1i Prt A v A z v w v z ˙ w
7 1 prtlem13 z ˙ w p A z p w p
8 prtlem17 Prt A v A z v p A z p w p w v
9 7 8 syl7bi Prt A v A z v z ˙ w w v
10 6 9 impbidd Prt A v A z v w v z ˙ w