Metamath Proof Explorer


Theorem prtlem18

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙=xy|uAxuyu
Assertion prtlem18 PrtAvAzvwvz˙w

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙=xy|uAxuyu
2 rspe vAzvwvvAzvwv
3 2 expr vAzvwvvAzvwv
4 1 prtlem13 z˙wvAzvwv
5 3 4 syl6ibr vAzvwvz˙w
6 5 a1i PrtAvAzvwvz˙w
7 1 prtlem13 z˙wpAzpwp
8 prtlem17 PrtAvAzvpAzpwpwv
9 7 8 syl7bi PrtAvAzvz˙wwv
10 6 9 impbidd PrtAvAzvwvz˙w