Metamath Proof Explorer


Theorem psr1lmod

Description: Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis psr1lmod.p P=PwSer1R
Assertion psr1lmod RRingPLMod

Proof

Step Hyp Ref Expression
1 psr1lmod.p P=PwSer1R
2 1 psr1val P=1𝑜ordPwSerR
3 1on 1𝑜On
4 3 a1i RRing1𝑜On
5 id RRingRRing
6 0ss 1𝑜×1𝑜
7 6 a1i RRing1𝑜×1𝑜
8 2 4 5 7 opsrlmod RRingPLMod