Metamath Proof Explorer


Theorem opsrlmod

Description: Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses opsrring.o O = I ordPwSer R T
opsrring.i φ I V
opsrring.r φ R Ring
opsrring.t φ T I × I
Assertion opsrlmod φ O LMod

Proof

Step Hyp Ref Expression
1 opsrring.o O = I ordPwSer R T
2 opsrring.i φ I V
3 opsrring.r φ R Ring
4 opsrring.t φ T I × I
5 eqid I mPwSer R = I mPwSer R
6 5 2 3 psrlmod φ I mPwSer R LMod
7 eqidd φ Base I mPwSer R = Base I mPwSer R
8 5 1 4 opsrbas φ Base I mPwSer R = Base O
9 5 1 4 opsrplusg φ + I mPwSer R = + O
10 9 oveqdr φ x Base I mPwSer R y Base I mPwSer R x + I mPwSer R y = x + O y
11 5 2 3 psrsca φ R = Scalar I mPwSer R
12 5 1 4 2 3 opsrsca φ R = Scalar O
13 eqid Base R = Base R
14 5 1 4 opsrvsca φ I mPwSer R = O
15 14 oveqdr φ x Base R y Base I mPwSer R x I mPwSer R y = x O y
16 7 8 10 11 12 13 15 lmodpropd φ I mPwSer R LMod O LMod
17 6 16 mpbid φ O LMod