Metamath Proof Explorer


Theorem lmodpropd

Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lmodpropd.1 φ B = Base K
lmodpropd.2 φ B = Base L
lmodpropd.3 φ x B y B x + K y = x + L y
lmodpropd.4 φ F = Scalar K
lmodpropd.5 φ F = Scalar L
lmodpropd.6 P = Base F
lmodpropd.7 φ x P y B x K y = x L y
Assertion lmodpropd φ K LMod L LMod

Proof

Step Hyp Ref Expression
1 lmodpropd.1 φ B = Base K
2 lmodpropd.2 φ B = Base L
3 lmodpropd.3 φ x B y B x + K y = x + L y
4 lmodpropd.4 φ F = Scalar K
5 lmodpropd.5 φ F = Scalar L
6 lmodpropd.6 P = Base F
7 lmodpropd.7 φ x P y B x K y = x L y
8 eqid Scalar K = Scalar K
9 eqid Scalar L = Scalar L
10 4 fveq2d φ Base F = Base Scalar K
11 6 10 syl5eq φ P = Base Scalar K
12 5 fveq2d φ Base F = Base Scalar L
13 6 12 syl5eq φ P = Base Scalar L
14 4 5 eqtr3d φ Scalar K = Scalar L
15 14 adantr φ x P y P Scalar K = Scalar L
16 15 fveq2d φ x P y P + Scalar K = + Scalar L
17 16 oveqd φ x P y P x + Scalar K y = x + Scalar L y
18 15 fveq2d φ x P y P Scalar K = Scalar L
19 18 oveqd φ x P y P x Scalar K y = x Scalar L y
20 1 2 8 9 11 13 3 17 19 7 lmodprop2d φ K LMod L LMod