Metamath Proof Explorer


Theorem opsrlmod

Description: Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses opsrring.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrring.i ( 𝜑𝐼𝑉 )
opsrring.r ( 𝜑𝑅 ∈ Ring )
opsrring.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
Assertion opsrlmod ( 𝜑𝑂 ∈ LMod )

Proof

Step Hyp Ref Expression
1 opsrring.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
2 opsrring.i ( 𝜑𝐼𝑉 )
3 opsrring.r ( 𝜑𝑅 ∈ Ring )
4 opsrring.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
5 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
6 5 2 3 psrlmod ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ LMod )
7 eqidd ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
8 5 1 4 opsrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ 𝑂 ) )
9 5 1 4 opsrplusg ( 𝜑 → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g𝑂 ) )
10 9 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g𝑂 ) 𝑦 ) )
11 5 2 3 psrsca ( 𝜑𝑅 = ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) )
12 5 1 4 2 3 opsrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑂 ) )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 5 1 4 opsrvsca ( 𝜑 → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠𝑂 ) )
15 14 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠𝑂 ) 𝑦 ) )
16 7 8 10 11 12 13 15 lmodpropd ( 𝜑 → ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ↔ 𝑂 ∈ LMod ) )
17 6 16 mpbid ( 𝜑𝑂 ∈ LMod )