Metamath Proof Explorer


Theorem psrn

Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008)

Ref Expression
Hypothesis psref.1 X=domR
Assertion psrn RPosetRelX=ranR

Proof

Step Hyp Ref Expression
1 psref.1 X=domR
2 psdmrn RPosetReldomR=RranR=R
3 eqtr3 domR=RranR=RdomR=ranR
4 2 3 syl RPosetReldomR=ranR
5 1 4 eqtrid RPosetRelX=ranR