Metamath Proof Explorer


Theorem psssdm

Description: Field of a subposet. (Contributed by FL, 19-Sep-2011) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis psssdm.1 X=domR
Assertion psssdm RPosetRelAXdomRA×A=A

Proof

Step Hyp Ref Expression
1 psssdm.1 X=domR
2 1 psssdm2 RPosetReldomRA×A=XA
3 sseqin2 AXXA=A
4 3 biimpi AXXA=A
5 2 4 sylan9eq RPosetRelAXdomRA×A=A