Metamath Proof Explorer


Theorem pssv

Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998)

Ref Expression
Assertion pssv AV¬A=V

Proof

Step Hyp Ref Expression
1 ssv AV
2 dfpss2 AVAV¬A=V
3 1 2 mpbiran AV¬A=V