Metamath Proof Explorer


Theorem psubssat

Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atpsub.a A=AtomsK
atpsub.s S=PSubSpK
Assertion psubssat KBXSXA

Proof

Step Hyp Ref Expression
1 atpsub.a A=AtomsK
2 atpsub.s S=PSubSpK
3 eqid K=K
4 eqid joinK=joinK
5 3 4 1 2 ispsubsp KBXSXApXqXrArKpjoinKqrX
6 5 simprbda KBXSXA