Metamath Proof Explorer


Theorem ispsubsp

Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses psubspset.l ˙=K
psubspset.j ˙=joinK
psubspset.a A=AtomsK
psubspset.s S=PSubSpK
Assertion ispsubsp KDXSXApXqXrAr˙p˙qrX

Proof

Step Hyp Ref Expression
1 psubspset.l ˙=K
2 psubspset.j ˙=joinK
3 psubspset.a A=AtomsK
4 psubspset.s S=PSubSpK
5 1 2 3 4 psubspset KDS=x|xApxqxrAr˙p˙qrx
6 5 eleq2d KDXSXx|xApxqxrAr˙p˙qrx
7 3 fvexi AV
8 7 ssex XAXV
9 8 adantr XApXqXrAr˙p˙qrXXV
10 sseq1 x=XxAXA
11 eleq2 x=XrxrX
12 11 imbi2d x=Xr˙p˙qrxr˙p˙qrX
13 12 ralbidv x=XrAr˙p˙qrxrAr˙p˙qrX
14 13 raleqbi1dv x=XqxrAr˙p˙qrxqXrAr˙p˙qrX
15 14 raleqbi1dv x=XpxqxrAr˙p˙qrxpXqXrAr˙p˙qrX
16 10 15 anbi12d x=XxApxqxrAr˙p˙qrxXApXqXrAr˙p˙qrX
17 9 16 elab3 Xx|xApxqxrAr˙p˙qrxXApXqXrAr˙p˙qrX
18 6 17 bitrdi KDXSXApXqXrAr˙p˙qrX