Metamath Proof Explorer


Theorem ispsubsp2

Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012)

Ref Expression
Hypotheses psubspset.l ˙=K
psubspset.j ˙=joinK
psubspset.a A=AtomsK
psubspset.s S=PSubSpK
Assertion ispsubsp2 KDXSXApAqXrXp˙q˙rpX

Proof

Step Hyp Ref Expression
1 psubspset.l ˙=K
2 psubspset.j ˙=joinK
3 psubspset.a A=AtomsK
4 psubspset.s S=PSubSpK
5 1 2 3 4 ispsubsp KDXSXAqXrXpAp˙q˙rpX
6 ralcom rXpAp˙q˙rpXpArXp˙q˙rpX
7 r19.23v rXp˙q˙rpXrXp˙q˙rpX
8 7 ralbii pArXp˙q˙rpXpArXp˙q˙rpX
9 6 8 bitri rXpAp˙q˙rpXpArXp˙q˙rpX
10 9 ralbii qXrXpAp˙q˙rpXqXpArXp˙q˙rpX
11 ralcom qXpArXp˙q˙rpXpAqXrXp˙q˙rpX
12 r19.23v qXrXp˙q˙rpXqXrXp˙q˙rpX
13 12 ralbii pAqXrXp˙q˙rpXpAqXrXp˙q˙rpX
14 11 13 bitri qXpArXp˙q˙rpXpAqXrXp˙q˙rpX
15 10 14 bitri qXrXpAp˙q˙rpXpAqXrXp˙q˙rpX
16 15 a1i KDqXrXpAp˙q˙rpXpAqXrXp˙q˙rpX
17 16 anbi2d KDXAqXrXpAp˙q˙rpXXApAqXrXp˙q˙rpX
18 5 17 bitrd KDXSXApAqXrXp˙q˙rpX