Metamath Proof Explorer


Theorem psubspi

Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012)

Ref Expression
Hypotheses psubspset.l ˙=K
psubspset.j ˙=joinK
psubspset.a A=AtomsK
psubspset.s S=PSubSpK
Assertion psubspi KDXSPAqXrXP˙q˙rPX

Proof

Step Hyp Ref Expression
1 psubspset.l ˙=K
2 psubspset.j ˙=joinK
3 psubspset.a A=AtomsK
4 psubspset.s S=PSubSpK
5 1 2 3 4 ispsubsp2 KDXSXApAqXrXp˙q˙rpX
6 5 simplbda KDXSpAqXrXp˙q˙rpX
7 6 ex KDXSpAqXrXp˙q˙rpX
8 breq1 p=Pp˙q˙rP˙q˙r
9 8 2rexbidv p=PqXrXp˙q˙rqXrXP˙q˙r
10 eleq1 p=PpXPX
11 9 10 imbi12d p=PqXrXp˙q˙rpXqXrXP˙q˙rPX
12 11 rspccv pAqXrXp˙q˙rpXPAqXrXP˙q˙rPX
13 7 12 syl6 KDXSPAqXrXP˙q˙rPX
14 13 3imp1 KDXSPAqXrXP˙q˙rPX