Metamath Proof Explorer


Theorem psubspi2N

Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubspset.l ˙=K
psubspset.j ˙=joinK
psubspset.a A=AtomsK
psubspset.s S=PSubSpK
Assertion psubspi2N KDXSPAQXRXP˙Q˙RPX

Proof

Step Hyp Ref Expression
1 psubspset.l ˙=K
2 psubspset.j ˙=joinK
3 psubspset.a A=AtomsK
4 psubspset.s S=PSubSpK
5 oveq1 q=Qq˙r=Q˙r
6 5 breq2d q=QP˙q˙rP˙Q˙r
7 oveq2 r=RQ˙r=Q˙R
8 7 breq2d r=RP˙Q˙rP˙Q˙R
9 6 8 rspc2ev QXRXP˙Q˙RqXrXP˙q˙r
10 1 2 3 4 psubspi KDXSPAqXrXP˙q˙rPX
11 9 10 sylan2 KDXSPAQXRXP˙Q˙RPX