Metamath Proof Explorer


Theorem 0psubN

Description: The empty set is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypothesis 0psub.s S=PSubSpK
Assertion 0psubN KVS

Proof

Step Hyp Ref Expression
1 0psub.s S=PSubSpK
2 0ss AtomsK
3 ral0 pqrAtomsKrKpjoinKqr
4 2 3 pm3.2i AtomsKpqrAtomsKrKpjoinKqr
5 eqid K=K
6 eqid joinK=joinK
7 eqid AtomsK=AtomsK
8 5 6 7 1 ispsubsp KVSAtomsKpqrAtomsKrKpjoinKqr
9 4 8 mpbiri KVS