Metamath Proof Explorer


Theorem snatpsubN

Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses snpsub.a A=AtomsK
snpsub.s S=PSubSpK
Assertion snatpsubN KAtLatPAPS

Proof

Step Hyp Ref Expression
1 snpsub.a A=AtomsK
2 snpsub.s S=PSubSpK
3 snssi PAPA
4 3 adantl KAtLatPAPA
5 atllat KAtLatKLat
6 eqid BaseK=BaseK
7 6 1 atbase PAPBaseK
8 eqid joinK=joinK
9 6 8 latjidm KLatPBaseKPjoinKP=P
10 5 7 9 syl2an KAtLatPAPjoinKP=P
11 10 adantr KAtLatPArAPjoinKP=P
12 11 breq2d KAtLatPArArKPjoinKPrKP
13 eqid K=K
14 13 1 atcmp KAtLatrAPArKPr=P
15 14 3com23 KAtLatPArArKPr=P
16 15 3expa KAtLatPArArKPr=P
17 16 biimpd KAtLatPArArKPr=P
18 12 17 sylbid KAtLatPArArKPjoinKPr=P
19 18 adantld KAtLatPArAp=Pq=PrKPjoinKPr=P
20 velsn pPp=P
21 velsn qPq=P
22 20 21 anbi12i pPqPp=Pq=P
23 22 anbi1i pPqPrKpjoinKqp=Pq=PrKpjoinKq
24 oveq12 p=Pq=PpjoinKq=PjoinKP
25 24 breq2d p=Pq=PrKpjoinKqrKPjoinKP
26 25 pm5.32i p=Pq=PrKpjoinKqp=Pq=PrKPjoinKP
27 23 26 bitri pPqPrKpjoinKqp=Pq=PrKPjoinKP
28 velsn rPr=P
29 19 27 28 3imtr4g KAtLatPArApPqPrKpjoinKqrP
30 29 exp4b KAtLatPArApPqPrKpjoinKqrP
31 30 com23 KAtLatPApPqPrArKpjoinKqrP
32 31 ralrimdv KAtLatPApPqPrArKpjoinKqrP
33 32 ralrimivv KAtLatPApPqPrArKpjoinKqrP
34 4 33 jca KAtLatPAPApPqPrArKpjoinKqrP
35 34 ex KAtLatPAPApPqPrArKpjoinKqrP
36 13 8 1 2 ispsubsp KAtLatPSPApPqPrArKpjoinKqrP
37 35 36 sylibrd KAtLatPAPS
38 37 imp KAtLatPAPS