Step |
Hyp |
Ref |
Expression |
1 |
|
snpsub.a |
|- A = ( Atoms ` K ) |
2 |
|
snpsub.s |
|- S = ( PSubSp ` K ) |
3 |
|
snssi |
|- ( P e. A -> { P } C_ A ) |
4 |
3
|
adantl |
|- ( ( K e. AtLat /\ P e. A ) -> { P } C_ A ) |
5 |
|
atllat |
|- ( K e. AtLat -> K e. Lat ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 1
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
9 |
6 8
|
latjidm |
|- ( ( K e. Lat /\ P e. ( Base ` K ) ) -> ( P ( join ` K ) P ) = P ) |
10 |
5 7 9
|
syl2an |
|- ( ( K e. AtLat /\ P e. A ) -> ( P ( join ` K ) P ) = P ) |
11 |
10
|
adantr |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( P ( join ` K ) P ) = P ) |
12 |
11
|
breq2d |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) ( P ( join ` K ) P ) <-> r ( le ` K ) P ) ) |
13 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
14 |
13 1
|
atcmp |
|- ( ( K e. AtLat /\ r e. A /\ P e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
15 |
14
|
3com23 |
|- ( ( K e. AtLat /\ P e. A /\ r e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
16 |
15
|
3expa |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) P <-> r = P ) ) |
17 |
16
|
biimpd |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) P -> r = P ) ) |
18 |
12 17
|
sylbid |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( r ( le ` K ) ( P ( join ` K ) P ) -> r = P ) ) |
19 |
18
|
adantld |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) -> r = P ) ) |
20 |
|
velsn |
|- ( p e. { P } <-> p = P ) |
21 |
|
velsn |
|- ( q e. { P } <-> q = P ) |
22 |
20 21
|
anbi12i |
|- ( ( p e. { P } /\ q e. { P } ) <-> ( p = P /\ q = P ) ) |
23 |
22
|
anbi1i |
|- ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) ) |
24 |
|
oveq12 |
|- ( ( p = P /\ q = P ) -> ( p ( join ` K ) q ) = ( P ( join ` K ) P ) ) |
25 |
24
|
breq2d |
|- ( ( p = P /\ q = P ) -> ( r ( le ` K ) ( p ( join ` K ) q ) <-> r ( le ` K ) ( P ( join ` K ) P ) ) ) |
26 |
25
|
pm5.32i |
|- ( ( ( p = P /\ q = P ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) ) |
27 |
23 26
|
bitri |
|- ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) <-> ( ( p = P /\ q = P ) /\ r ( le ` K ) ( P ( join ` K ) P ) ) ) |
28 |
|
velsn |
|- ( r e. { P } <-> r = P ) |
29 |
19 27 28
|
3imtr4g |
|- ( ( ( K e. AtLat /\ P e. A ) /\ r e. A ) -> ( ( ( p e. { P } /\ q e. { P } ) /\ r ( le ` K ) ( p ( join ` K ) q ) ) -> r e. { P } ) ) |
30 |
29
|
exp4b |
|- ( ( K e. AtLat /\ P e. A ) -> ( r e. A -> ( ( p e. { P } /\ q e. { P } ) -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
31 |
30
|
com23 |
|- ( ( K e. AtLat /\ P e. A ) -> ( ( p e. { P } /\ q e. { P } ) -> ( r e. A -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
32 |
31
|
ralrimdv |
|- ( ( K e. AtLat /\ P e. A ) -> ( ( p e. { P } /\ q e. { P } ) -> A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) |
33 |
32
|
ralrimivv |
|- ( ( K e. AtLat /\ P e. A ) -> A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) |
34 |
4 33
|
jca |
|- ( ( K e. AtLat /\ P e. A ) -> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) |
35 |
34
|
ex |
|- ( K e. AtLat -> ( P e. A -> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
36 |
13 8 1 2
|
ispsubsp |
|- ( K e. AtLat -> ( { P } e. S <-> ( { P } C_ A /\ A. p e. { P } A. q e. { P } A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. { P } ) ) ) ) |
37 |
35 36
|
sylibrd |
|- ( K e. AtLat -> ( P e. A -> { P } e. S ) ) |
38 |
37
|
imp |
|- ( ( K e. AtLat /\ P e. A ) -> { P } e. S ) |