| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pointpsub.p |
|- P = ( Points ` K ) |
| 2 |
|
pointpsub.s |
|- S = ( PSubSp ` K ) |
| 3 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 4 |
3 1
|
ispointN |
|- ( K e. AtLat -> ( X e. P <-> E. q e. ( Atoms ` K ) X = { q } ) ) |
| 5 |
3 2
|
snatpsubN |
|- ( ( K e. AtLat /\ q e. ( Atoms ` K ) ) -> { q } e. S ) |
| 6 |
5
|
ex |
|- ( K e. AtLat -> ( q e. ( Atoms ` K ) -> { q } e. S ) ) |
| 7 |
|
eleq1a |
|- ( { q } e. S -> ( X = { q } -> X e. S ) ) |
| 8 |
6 7
|
syl6 |
|- ( K e. AtLat -> ( q e. ( Atoms ` K ) -> ( X = { q } -> X e. S ) ) ) |
| 9 |
8
|
rexlimdv |
|- ( K e. AtLat -> ( E. q e. ( Atoms ` K ) X = { q } -> X e. S ) ) |
| 10 |
4 9
|
sylbid |
|- ( K e. AtLat -> ( X e. P -> X e. S ) ) |
| 11 |
10
|
imp |
|- ( ( K e. AtLat /\ X e. P ) -> X e. S ) |