Metamath Proof Explorer


Theorem pointpsubN

Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointpsub.p P=PointsK
pointpsub.s S=PSubSpK
Assertion pointpsubN KAtLatXPXS

Proof

Step Hyp Ref Expression
1 pointpsub.p P=PointsK
2 pointpsub.s S=PSubSpK
3 eqid AtomsK=AtomsK
4 3 1 ispointN KAtLatXPqAtomsKX=q
5 3 2 snatpsubN KAtLatqAtomsKqS
6 5 ex KAtLatqAtomsKqS
7 eleq1a qSX=qXS
8 6 7 syl6 KAtLatqAtomsKX=qXS
9 8 rexlimdv KAtLatqAtomsKX=qXS
10 4 9 sylbid KAtLatXPXS
11 10 imp KAtLatXPXS