Step |
Hyp |
Ref |
Expression |
1 |
|
linepsub.n |
|
2 |
|
linepsub.s |
|
3 |
|
ssrab2 |
|
4 |
|
sseq1 |
|
5 |
3 4
|
mpbiri |
|
6 |
5
|
a1i |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
7 8
|
atbase |
|
10 |
7 8
|
atbase |
|
11 |
9 10
|
anim12i |
|
12 |
|
eqid |
|
13 |
7 12
|
latjcl |
|
14 |
13
|
3expb |
|
15 |
11 14
|
sylan2 |
|
16 |
|
eleq2 |
|
17 |
|
breq1 |
|
18 |
17
|
elrab |
|
19 |
7 8
|
atbase |
|
20 |
19
|
anim1i |
|
21 |
18 20
|
sylbi |
|
22 |
16 21
|
syl6bi |
|
23 |
|
eleq2 |
|
24 |
|
breq1 |
|
25 |
24
|
elrab |
|
26 |
7 8
|
atbase |
|
27 |
26
|
anim1i |
|
28 |
25 27
|
sylbi |
|
29 |
23 28
|
syl6bi |
|
30 |
22 29
|
anim12d |
|
31 |
|
an4 |
|
32 |
30 31
|
syl6ib |
|
33 |
32
|
imp |
|
34 |
33
|
anim2i |
|
35 |
34
|
anassrs |
|
36 |
7 8
|
atbase |
|
37 |
|
eqid |
|
38 |
7 37 12
|
latjle12 |
|
39 |
38
|
biimpd |
|
40 |
39
|
3exp2 |
|
41 |
40
|
impd |
|
42 |
41
|
com23 |
|
43 |
42
|
imp43 |
|
44 |
43
|
adantr |
|
45 |
7 12
|
latjcl |
|
46 |
45
|
3expib |
|
47 |
7 37
|
lattr |
|
48 |
47
|
3exp2 |
|
49 |
48
|
com24 |
|
50 |
46 49
|
syl5d |
|
51 |
50
|
imp41 |
|
52 |
51
|
adantlrr |
|
53 |
44 52
|
mpan2d |
|
54 |
35 36 53
|
syl2an |
|
55 |
|
simpr |
|
56 |
54 55
|
jctild |
|
57 |
|
eleq2 |
|
58 |
|
breq1 |
|
59 |
58
|
elrab |
|
60 |
57 59
|
bitrdi |
|
61 |
60
|
ad3antlr |
|
62 |
56 61
|
sylibrd |
|
63 |
62
|
ralrimiva |
|
64 |
63
|
ralrimivva |
|
65 |
64
|
ex |
|
66 |
15 65
|
syldan |
|
67 |
6 66
|
jcad |
|
68 |
67
|
adantld |
|
69 |
68
|
rexlimdvva |
|
70 |
37 12 8 1
|
isline |
|
71 |
37 12 8 2
|
ispsubsp |
|
72 |
69 70 71
|
3imtr4d |
|
73 |
72
|
imp |
|