Metamath Proof Explorer


Theorem atpsubN

Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses atpsub.a A=AtomsK
atpsub.s S=PSubSpK
Assertion atpsubN KVAS

Proof

Step Hyp Ref Expression
1 atpsub.a A=AtomsK
2 atpsub.s S=PSubSpK
3 ssid AA
4 ax-1 rArKpjoinKqrA
5 4 rgen rArKpjoinKqrA
6 5 rgen2w pAqArArKpjoinKqrA
7 3 6 pm3.2i AApAqArArKpjoinKqrA
8 eqid K=K
9 eqid joinK=joinK
10 8 9 1 2 ispsubsp KVASAApAqArArKpjoinKqrA
11 7 10 mpbiri KVAS