Metamath Proof Explorer


Theorem psubspset

Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses psubspset.l ˙=K
psubspset.j ˙=joinK
psubspset.a A=AtomsK
psubspset.s S=PSubSpK
Assertion psubspset KBS=s|sApsqsrAr˙p˙qrs

Proof

Step Hyp Ref Expression
1 psubspset.l ˙=K
2 psubspset.j ˙=joinK
3 psubspset.a A=AtomsK
4 psubspset.s S=PSubSpK
5 elex KBKV
6 fveq2 k=KAtomsk=AtomsK
7 6 3 eqtr4di k=KAtomsk=A
8 7 sseq2d k=KsAtomsksA
9 fveq2 k=Kjoink=joinK
10 9 2 eqtr4di k=Kjoink=˙
11 10 oveqd k=Kpjoinkq=p˙q
12 11 breq2d k=Krkpjoinkqrkp˙q
13 fveq2 k=Kk=K
14 13 1 eqtr4di k=Kk=˙
15 14 breqd k=Krkp˙qr˙p˙q
16 12 15 bitrd k=Krkpjoinkqr˙p˙q
17 16 imbi1d k=Krkpjoinkqrsr˙p˙qrs
18 7 17 raleqbidv k=KrAtomskrkpjoinkqrsrAr˙p˙qrs
19 18 2ralbidv k=KpsqsrAtomskrkpjoinkqrspsqsrAr˙p˙qrs
20 8 19 anbi12d k=KsAtomskpsqsrAtomskrkpjoinkqrssApsqsrAr˙p˙qrs
21 20 abbidv k=Ks|sAtomskpsqsrAtomskrkpjoinkqrs=s|sApsqsrAr˙p˙qrs
22 df-psubsp PSubSp=kVs|sAtomskpsqsrAtomskrkpjoinkqrs
23 3 fvexi AV
24 23 pwex 𝒫AV
25 velpw s𝒫AsA
26 25 anbi1i s𝒫ApsqsrAr˙p˙qrssApsqsrAr˙p˙qrs
27 26 abbii s|s𝒫ApsqsrAr˙p˙qrs=s|sApsqsrAr˙p˙qrs
28 ssab2 s|s𝒫ApsqsrAr˙p˙qrs𝒫A
29 27 28 eqsstrri s|sApsqsrAr˙p˙qrs𝒫A
30 24 29 ssexi s|sApsqsrAr˙p˙qrsV
31 21 22 30 fvmpt KVPSubSpK=s|sApsqsrAr˙p˙qrs
32 4 31 eqtrid KVS=s|sApsqsrAr˙p˙qrs
33 5 32 syl KBS=s|sApsqsrAr˙p˙qrs