Metamath Proof Explorer


Theorem ptcls

Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses ptcls.2 J=𝑡kAR
ptcls.a φAV
ptcls.j φkARTopOnX
ptcls.c φkASX
Assertion ptcls φclsJkAS=kAclsRS

Proof

Step Hyp Ref Expression
1 ptcls.2 J=𝑡kAR
2 ptcls.a φAV
3 ptcls.j φkARTopOnX
4 ptcls.c φkASX
5 toponmax RTopOnXXR
6 3 5 syl φkAXR
7 6 4 ssexd φkASV
8 7 ralrimiva φkASV
9 iunexg AVkASVkASV
10 2 8 9 syl2anc φkASV
11 axac3 CHOICE
12 acacni CHOICEAVAC_A=V
13 11 2 12 sylancr φAC_A=V
14 10 13 eleqtrrd φkASAC_A
15 1 2 3 4 14 ptclsg φclsJkAS=kAclsRS