Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o . (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 1-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pw2eng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg | |
|
2 | ovexd | |
|
3 | id | |
|
4 | 0ex | |
|
5 | 4 | a1i | |
6 | p0ex | |
|
7 | 6 | a1i | |
8 | 0nep0 | |
|
9 | 8 | a1i | |
10 | eqid | |
|
11 | 3 5 7 9 10 | pw2f1o | |
12 | f1oen2g | |
|
13 | 1 2 11 12 | syl3anc | |
14 | df2o2 | |
|
15 | 14 | oveq1i | |
16 | 13 15 | breqtrrdi | |