Metamath Proof Explorer


Theorem pw2eng

Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o . (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 1-Jul-2015)

Ref Expression
Assertion pw2eng AV𝒫A2𝑜A

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 ovexd AVAV
3 id AVAV
4 0ex V
5 4 a1i AVV
6 p0ex V
7 6 a1i AVV
8 0nep0
9 8 a1i AV
10 eqid x𝒫AzAifzx=x𝒫AzAifzx
11 3 5 7 9 10 pw2f1o AVx𝒫AzAifzx:𝒫A1-1 ontoA
12 f1oen2g 𝒫AVAVx𝒫AzAifzx:𝒫A1-1 ontoA𝒫AA
13 1 2 11 12 syl3anc AV𝒫AA
14 df2o2 2𝑜=
15 14 oveq1i 2𝑜A=A
16 13 15 breqtrrdi AV𝒫A2𝑜A