Metamath Proof Explorer


Theorem pwssca

Description: The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssca.y Y=R𝑠I
pwssca.s S=ScalarR
Assertion pwssca RVIWS=ScalarY

Proof

Step Hyp Ref Expression
1 pwssca.y Y=R𝑠I
2 pwssca.s S=ScalarR
3 eqid S𝑠I×R=S𝑠I×R
4 2 fvexi SV
5 4 a1i RVIWSV
6 simpr RVIWIW
7 snex RV
8 xpexg IWRVI×RV
9 6 7 8 sylancl RVIWI×RV
10 3 5 9 prdssca RVIWS=ScalarS𝑠I×R
11 1 2 pwsval RVIWY=S𝑠I×R
12 11 fveq2d RVIWScalarY=ScalarS𝑠I×R
13 10 12 eqtr4d RVIWS=ScalarY