Metamath Proof Explorer


Theorem pwssnf1o

Description: Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssnf1o.y Y=R𝑠I
pwssnf1o.b B=BaseR
pwssnf1o.f F=xBI×x
pwssnf1o.c C=BaseY
Assertion pwssnf1o RVIWF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 pwssnf1o.y Y=R𝑠I
2 pwssnf1o.b B=BaseR
3 pwssnf1o.f F=xBI×x
4 pwssnf1o.c C=BaseY
5 2 fvexi BV
6 simpr RVIWIW
7 3 mapsnf1o BVIWF:B1-1 ontoBI
8 5 6 7 sylancr RVIWF:B1-1 ontoBI
9 snex IV
10 1 2 pwsbas RVIVBI=BaseY
11 9 10 mpan2 RVBI=BaseY
12 11 adantr RVIWBI=BaseY
13 4 12 eqtr4id RVIWC=BI
14 13 f1oeq3d RVIWF:B1-1 ontoCF:B1-1 ontoBI
15 8 14 mpbird RVIWF:B1-1 ontoC