Metamath Proof Explorer


Theorem qfto

Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion qfto A×BRR-1xAyBxRyyRx

Proof

Step Hyp Ref Expression
1 opelxp xyA×BxAyB
2 brun xRR-1yxRyxR-1y
3 df-br xRR-1yxyRR-1
4 vex xV
5 vex yV
6 4 5 brcnv xR-1yyRx
7 6 orbi2i xRyxR-1yxRyyRx
8 2 3 7 3bitr3i xyRR-1xRyyRx
9 1 8 imbi12i xyA×BxyRR-1xAyBxRyyRx
10 9 2albii xyxyA×BxyRR-1xyxAyBxRyyRx
11 relxp RelA×B
12 ssrel RelA×BA×BRR-1xyxyA×BxyRR-1
13 11 12 ax-mp A×BRR-1xyxyA×BxyRR-1
14 r2al xAyBxRyyRxxyxAyBxRyyRx
15 10 13 14 3bitr4i A×BRR-1xAyBxRyyRx