Metamath Proof Explorer


Theorem qsel

Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion qsel RErXBA/RCBB=CR

Proof

Step Hyp Ref Expression
1 eqid A/R=A/R
2 eleq2 xR=BCxRCB
3 eqeq1 xR=BxR=CRB=CR
4 2 3 imbi12d xR=BCxRxR=CRCBB=CR
5 elecg CxRxVCxRxRC
6 5 elvd CxRCxRxRC
7 6 ibi CxRxRC
8 simpll RErXxAxRCRErX
9 simpr RErXxAxRCxRC
10 8 9 erthi RErXxAxRCxR=CR
11 10 ex RErXxAxRCxR=CR
12 7 11 syl5 RErXxACxRxR=CR
13 1 4 12 ectocld RErXBA/RCBB=CR
14 13 3impia RErXBA/RCBB=CR