Metamath Proof Explorer


Theorem qseq1

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq1 A=BA/C=B/C

Proof

Step Hyp Ref Expression
1 rexeq A=BxAy=xCxBy=xC
2 1 abbidv A=By|xAy=xC=y|xBy=xC
3 df-qs A/C=y|xAy=xC
4 df-qs B/C=y|xBy=xC
5 2 3 4 3eqtr4g A=BA/C=B/C