Metamath Proof Explorer


Theorem qsinxp

Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Assertion qsinxp RAAA/R=A/RA×A

Proof

Step Hyp Ref Expression
1 ecinxp RAAxAxR=xRA×A
2 1 eqeq2d RAAxAy=xRy=xRA×A
3 2 rexbidva RAAxAy=xRxAy=xRA×A
4 3 abbidv RAAy|xAy=xR=y|xAy=xRA×A
5 df-qs A/R=y|xAy=xR
6 df-qs A/RA×A=y|xAy=xRA×A
7 4 5 6 3eqtr4g RAAA/R=A/RA×A