Metamath Proof Explorer


Theorem r19.12OLD

Description: Obsolete version of 19.12 as of 4-Nov-2024. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.12OLD xAyBφyBxAφ

Proof

Step Hyp Ref Expression
1 df-rex xAyBφxxAyBφ
2 nfv yxA
3 nfra1 yyBφ
4 2 3 nfan yxAyBφ
5 4 nfex yxxAyBφ
6 1 5 nfxfr yxAyBφ
7 ax-1 xAyBφyBxAyBφ
8 rsp yBφyBφ
9 8 com12 yByBφφ
10 9 reximdv yBxAyBφxAφ
11 7 10 sylcom xAyBφyBxAφ
12 6 11 ralrimi xAyBφyBxAφ