Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification reean  
				
		 
		
			
		 
		Description:   Rearrange restricted existential quantifiers.  For a version based on
       fewer axioms see reeanv  .  (Contributed by NM , 27-Oct-2010)   (Proof
       shortened by Andrew Salmon , 30-May-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						reean.1   ⊢   Ⅎ  y   φ        
					 
					
						reean.2   ⊢   Ⅎ  x   ψ        
					 
				
					Assertion 
					reean    ⊢   ∃  x  ∈  A   ∃  y  ∈  B    φ   ∧   ψ        ↔    ∃  x  ∈  A   φ     ∧   ∃  y  ∈  B   ψ           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							reean.1  ⊢   Ⅎ  y   φ        
						
							2 
								
							 
							reean.2  ⊢   Ⅎ  x   ψ        
						
							3 
								
							 
							nfv  ⊢   Ⅎ  y   x  ∈  A         
						
							4 
								3  1 
							 
							nfan  ⊢   Ⅎ  y    x  ∈  A    ∧   φ         
						
							5 
								
							 
							nfv  ⊢   Ⅎ  x   y  ∈  B         
						
							6 
								5  2 
							 
							nfan  ⊢   Ⅎ  x    y  ∈  B    ∧   ψ         
						
							7 
								4  6 
							 
							eean   ⊢   ∃  x   ∃  y     x  ∈  A    ∧   φ    ∧    y  ∈  B    ∧   ψ         ↔    ∃  x    x  ∈  A    ∧   φ      ∧   ∃  y    y  ∈  B    ∧   ψ            
						
							8 
								7 
							 
							reeanlem   ⊢   ∃  x  ∈  A   ∃  y  ∈  B    φ   ∧   ψ        ↔    ∃  x  ∈  A   φ     ∧   ∃  y  ∈  B   ψ