Description: Rearrange restricted existential quantifiers. For a version based on fewer axioms see reeanv . (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reean.1 | |- F/ y ph |
|
| reean.2 | |- F/ x ps |
||
| Assertion | reean | |- ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reean.1 | |- F/ y ph |
|
| 2 | reean.2 | |- F/ x ps |
|
| 3 | nfv | |- F/ y x e. A |
|
| 4 | 3 1 | nfan | |- F/ y ( x e. A /\ ph ) |
| 5 | nfv | |- F/ x y e. B |
|
| 6 | 5 2 | nfan | |- F/ x ( y e. B /\ ps ) |
| 7 | 4 6 | eean | |- ( E. x E. y ( ( x e. A /\ ph ) /\ ( y e. B /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ E. y ( y e. B /\ ps ) ) ) |
| 8 | 7 | reeanlem | |- ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) ) |