Metamath Proof Explorer


Theorem eean

Description: Distribute existential quantifiers. (Contributed by NM, 27-Oct-2010) (Revised by Mario Carneiro, 6-Oct-2016)

Ref Expression
Hypotheses eean.1
|- F/ y ph
eean.2
|- F/ x ps
Assertion eean
|- ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )

Proof

Step Hyp Ref Expression
1 eean.1
 |-  F/ y ph
2 eean.2
 |-  F/ x ps
3 1 19.42
 |-  ( E. y ( ph /\ ps ) <-> ( ph /\ E. y ps ) )
4 3 exbii
 |-  ( E. x E. y ( ph /\ ps ) <-> E. x ( ph /\ E. y ps ) )
5 2 nfex
 |-  F/ x E. y ps
6 5 19.41
 |-  ( E. x ( ph /\ E. y ps ) <-> ( E. x ph /\ E. y ps ) )
7 4 6 bitri
 |-  ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )