Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.26-3
Next ⟩
ralbiim
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.26-3
Description:
Version of
r19.26
with three quantifiers.
(Contributed by
FL
, 22-Nov-2010)
Ref
Expression
Assertion
r19.26-3
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
Proof
Step
Hyp
Ref
Expression
1
r19.26
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
ψ
∧
∀
x
∈
A
χ
2
r19.26
⊢
∀
x
∈
A
φ
∧
ψ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
3
1
2
bianbi
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
4
df-3an
⊢
φ
∧
ψ
∧
χ
↔
φ
∧
ψ
∧
χ
5
4
ralbii
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
ψ
∧
χ
6
df-3an
⊢
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
7
3
5
6
3bitr4i
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ