Metamath Proof Explorer


Theorem r19.26-3

Description: Version of r19.26 with three quantifiers. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion r19.26-3 xAφψχxAφxAψxAχ

Proof

Step Hyp Ref Expression
1 df-3an φψχφψχ
2 1 ralbii xAφψχxAφψχ
3 r19.26 xAφψχxAφψxAχ
4 r19.26 xAφψxAφxAψ
5 4 anbi1i xAφψxAχxAφxAψxAχ
6 df-3an xAφxAψxAχxAφxAψxAχ
7 5 6 bitr4i xAφψxAχxAφxAψxAχ
8 2 3 7 3bitri xAφψχxAφxAψxAχ