Metamath Proof Explorer


Theorem r19.26-3

Description: Version of r19.26 with three quantifiers. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion r19.26-3 x A φ ψ χ x A φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 r19.26 x A φ ψ χ x A φ ψ x A χ
2 r19.26 x A φ ψ x A φ x A ψ
3 1 2 bianbi x A φ ψ χ x A φ x A ψ x A χ
4 df-3an φ ψ χ φ ψ χ
5 4 ralbii x A φ ψ χ x A φ ψ χ
6 df-3an x A φ x A ψ x A χ x A φ x A ψ x A χ
7 3 5 6 3bitr4i x A φ ψ χ x A φ x A ψ x A χ