Metamath Proof Explorer


Theorem r19.29OLD

Description: Obsolete version of r19.29 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.29OLD x A φ x A ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 pm3.2 φ ψ φ ψ
2 1 ralimi x A φ x A ψ φ ψ
3 rexim x A ψ φ ψ x A ψ x A φ ψ
4 2 3 syl x A φ x A ψ x A φ ψ
5 4 imp x A φ x A ψ x A φ ψ