Metamath Proof Explorer


Theorem r19.29OLD

Description: Obsolete version of r19.29 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.29OLD xAφxAψxAφψ

Proof

Step Hyp Ref Expression
1 pm3.2 φψφψ
2 1 ralimi xAφxAψφψ
3 rexim xAψφψxAψxAφψ
4 2 3 syl xAφxAψxAφψ
5 4 imp xAφxAψxAφψ