Description: Obsolete version of r19.29 as of 22-Dec-2024. (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.29OLD | |- ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
2 | 1 | ralimi | |- ( A. x e. A ph -> A. x e. A ( ps -> ( ph /\ ps ) ) ) |
3 | rexim | |- ( A. x e. A ( ps -> ( ph /\ ps ) ) -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) ) |
|
4 | 2 3 | syl | |- ( A. x e. A ph -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) ) |
5 | 4 | imp | |- ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) ) |