Metamath Proof Explorer


Theorem r19.41v

Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)

Ref Expression
Assertion r19.41v xAφψxAφψ

Proof

Step Hyp Ref Expression
1 anass xAφψxAφψ
2 1 exbii xxAφψxxAφψ
3 19.41v xxAφψxxAφψ
4 2 3 bitr3i xxAφψxxAφψ
5 df-rex xAφψxxAφψ
6 df-rex xAφxxAφ
7 6 anbi1i xAφψxxAφψ
8 4 5 7 3bitr4i xAφψxAφψ