Metamath Proof Explorer


Theorem r19.41v

Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)

Ref Expression
Assertion r19.41v x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 df-rex x A φ ψ x x A φ ψ
2 anass x A φ ψ x A φ ψ
3 2 exbii x x A φ ψ x x A φ ψ
4 19.41v x x A φ ψ x x A φ ψ
5 df-rex x A φ x x A φ
6 5 bicomi x x A φ x A φ
7 4 6 bianbi x x A φ ψ x A φ ψ
8 1 3 7 3bitr2i x A φ ψ x A φ ψ