Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.45v
Metamath Proof Explorer
Description: Restricted quantifier version of one direction of 19.45 . The other
direction holds when A is nonempty, see r19.45zv . (Contributed by NM , 2-Apr-2004)
Ref
Expression
Assertion
r19.45v
⊢ ∃ x ∈ A φ ∨ ψ → φ ∨ ∃ x ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
r19.43
⊢ ∃ x ∈ A φ ∨ ψ ↔ ∃ x ∈ A φ ∨ ∃ x ∈ A ψ
2
id
⊢ φ → φ
3
2
rexlimivw
⊢ ∃ x ∈ A φ → φ
4
3
orim1i
⊢ ∃ x ∈ A φ ∨ ∃ x ∈ A ψ → φ ∨ ∃ x ∈ A ψ
5
1 4
sylbi
⊢ ∃ x ∈ A φ ∨ ψ → φ ∨ ∃ x ∈ A ψ