Metamath Proof Explorer


Theorem r1sssucd

Description: Deductive form of r1sssuc . (Contributed by Noam Pasman, 19-Jan-2025)

Ref Expression
Hypothesis r1sssucd.1 φAOn
Assertion r1sssucd φR1AR1sucA

Proof

Step Hyp Ref Expression
1 r1sssucd.1 φAOn
2 r1sssuc AOnR1AR1sucA
3 1 2 syl φR1AR1sucA