Description: Deductive form of r1sssuc . (Contributed by Noam Pasman, 19-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r1sssucd.1 | |- ( ph -> A e. On ) |
|
| Assertion | r1sssucd | |- ( ph -> ( R1 ` A ) C_ ( R1 ` suc A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1sssucd.1 | |- ( ph -> A e. On ) |
|
| 2 | r1sssuc | |- ( A e. On -> ( R1 ` A ) C_ ( R1 ` suc A ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( R1 ` A ) C_ ( R1 ` suc A ) ) |