Metamath Proof Explorer


Theorem r1sssucd

Description: Deductive form of r1sssuc . (Contributed by Noam Pasman, 19-Jan-2025)

Ref Expression
Hypothesis r1sssucd.1
|- ( ph -> A e. On )
Assertion r1sssucd
|- ( ph -> ( R1 ` A ) C_ ( R1 ` suc A ) )

Proof

Step Hyp Ref Expression
1 r1sssucd.1
 |-  ( ph -> A e. On )
2 r1sssuc
 |-  ( A e. On -> ( R1 ` A ) C_ ( R1 ` suc A ) )
3 1 2 syl
 |-  ( ph -> ( R1 ` A ) C_ ( R1 ` suc A ) )